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Universal configurational structure in two-dimensional 
scalar models 

D Nicolaides and A D Bruce 
Department of Physics, University of Edinburgh, Edinburgh EH9 352, U K  

Received 7 August 1987 

Abstract. Monte Carlo methods are used to explore the universal configurational structure 
of two-dimensional spin-;, spin-1 and b 0 r d e r - 4 ~  models. Comparison of spin-f and spin-1 
data provides evidence that the magnetisation distribution (effectively the Helmholtz 
free-energy function) and its coupling derivative (effectively the internal-energy function) 
constitute readily accessible signatures of a universality class. It is shown that, when 
allowance is made for relatively large corrections-to-scaling effects, the behaviour of the 
b 0 r d e r - 4 ~  model may be satisfactorily matched to that of the other two models, substantiat- 
ing the view that the border model does indeed belong to the lsing universality class. 

1. Introduction 

In the vicinity of a continuous phase transition, certain physical observables display 
a remarkable degree of insensitivity to the microscopic details of the physical system 
involved. This is the phenomenon of universality. The phenomenon is expressed in 
its fullest form in the claim (Bervillier 1976) that all (multi-point) correlation functions 
are universal, provided the variables they describe are separated by large enough 
distances, and provided the scales of the variables and their separation are appropriately 
normalised. The full extent of this claim is seldom put to explicit test. It is customary, 
rather, to focus on a few prototype quantities, whose universality is implied by the 
general claim, most notably the critical indices, and, less frequently, appropriate ratios 
of the amplitudes of critical singularities. 

The universality claim may, however, be put to a considerably more exacting test. 
The universal scaling properties of the multi-point correlation functions imply corre- 
sponding properties for the distribution P (  M , )  of the coarse-grained ordering variable, 
with coarse-graining length I (Bruce 1981). This distribution is directly accessible to 
Monte Carlo techniques. It has been the subject of a number of studies. Binder (1981) 
investigated how the form of the distribution depends upon the nature of the blocking 
used to implement the coarse graining: the form differs according to whether the blocks 
are small subunits of a much larger system ( I < <  L, the linear dimension of the system) 
or actually constititute the system itself ( I  = L ) ,  in which case the form of the distribution 
turns out to depend upon the nature of the boundary conditions employed. Binder 
also showed how the scaling properties of the moments of the distribution may be 
used to compute critical indices, determine the surface tension (Binder 1982) and 
locate phase boundaries (Binder and Landau 1984). Complementary analytic work 
on the moments of the distribution (for I = L )  has also been reported for scalar models, 
using the E expansion in three dimensions (Brtzin and Zinn-Justin 1985) and conformal 
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invariance in two dimensions (Burkhardt and Derrida 1985). The former study has 
recently been extended (Eisenriegler and Tomaschitz 1987) to yield a result for the 
1 = L distribution itself, within a first-order E expansion. The idea that the distribution 
might be usefully employed as a hallmark of a universality class has also been developed 
briefly (Bruce 1985, hereafter referred to as I )  in an attempt to resolve the controversial 
question (Baker and Johnson 1984) of whether or not the two-dimensional 44 model, 
at its ‘border’ critical point, falls into the Ising universality class. 

In this paper we extend this programme with further Monte Carlo studies of the 
order-parameter distribution P (  M L )  in two-dimensional systems, of linear dimension 
L, with a scalar order parameter. Firstly, we check the proposed universality of the 
distribution, at the bulk system critical point, through explicit studies of spin-; and 
spin-1 Ising models, whose membership of a common (‘Ising’) universality class seems 
undisputed. The associated fixed-point function, P*(  M L ) ,  thus identified, may alterna- 
tively be viewed as a measure of the Helmholtz function A( M L )  for the Ising universality 
class, in the (finite-size) critical limit. Secondly, we determine the form, and check 
the universality, of the function which controls the deviation of P (  M L )  from its critical 
fixed-point limit P * ( M L ) ,  when the system is not precisely at its bulk critical point. 
This function turns out to be effectively a measure of the internal-energy function 
E ( M L )  for the Ising universality class, in the (finite-size) critical limit. Thirdly, we 
determine the form of the (‘corrections-to-scaling’) function which controls the devi- 
ation of P ( M L )  from P * ( M L )  when the system is at the bulk critical point, but the 
system size L is not sufficiently large to provide access to the asymptotic regime in 
which pure fixed-point behaviour is displayed. Finally, armed with these three func- 
tions, each of which may, we believe, be regarded as characteristic of the Ising 
universality class, we consider the 44 ‘border’ model. We find that the bulk of the 
discrepancy between the border-model critical-point distribution, computed in I, and 
the Ising fixed-point distribution should be attributed to corrections to scaling. 

2. Background 

The models to be considered in this paper are characterised by a set of local variables 
4,, j = 1, . . . , Ld, each variable being associated with one of the Ld sites of a (square 
d = 2) lattice of linear dimension L and subject to periodic boundary conditions. The 
statistical properties of the models are prescribed by the corresponding configurational 
probability which may be written in the form 

where 

(2. la)  

( 2 . i b )  

is the nearest-neighbour interaction energy (in units of the bond strength) and 

z=n (1 d4,P0(4,)) exp[-KE({4I)I (2.lc) 

is the partition function. The models are distinguished by the form assigned to the 
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( 2 . 2 ~ )  

(2.26) 

(2.2c) 

corresponding, respectively, to the spin-f, spin-1 and 44 models. The additional 
constraint A = 0 and the convention B = 0.1 14 233 . . . (normalising po to unit variance), 
together serve to locate the so-called border model in d4 parameter space (Baker and 
Johnson 1984). 

In this paper we shall be concerned with the equilibrium behaviour of the magnetisa- 
tion variable defined by 

ML= L-d C 4]. (2.3) 
I 

We shall focus on the equilibrium probability density 

(2.4) 

which may be regarded as a measure of the Helmholtz potential 

F (  ML) = -In Z( ML) 

where Z( ML) is the partition function in the constant magnetisation ensemble: 

Specifically, 

P( ML) = Z-' exp[ - F (  M L ) ]  ( 2 . 6 ~ )  

or 

F (  M L )  - F ( 0 )  = -In( P( M L ) / P ( 0 ) ) .  (2.6b) 

We shall also find it useful to examine the coupling derivative (effectively the tem- 
perature derivative) of the magnetisation distribution, 

(2.7) P,( M L )  = aP( M L ) / a K  

which is effectively a measure of the internal-energy function 

where 

E = -a In Z l a K  = ( E ( 4 ) )  (2.9b) 
is the mean energy in units of the coupling strength. 

We will focus on the behaviour of these functions in the vicinity of a critical point, 
located by a critical coupling K,. The universal scaling properties of the multi-point 
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correlation functions (Bervillier 1976) imply for the distribution P( M L )  the limiting 
(large L, small K - K c )  form (Binder 1981, Bruce 1981) 

P ( M L )  = b ( L ) F ( b ( L ) M , ,  a ( L ) ( K  - KJ, e ( L ) )  (2.10) 

where 

b ( L )  = b,LP’“ 

a ( L )  = a , ~ ” ”  

e (  L )  = eoLiw 

(2.11a) 

(2.1 1 b )  

(2.1 1 c )  

while a,, bo and e, are non-universal constants. The form assigned to the scale factor 
b( L )  guarantees that the variance of the critical-point distribution has the asymptotic 
(large-L) behaviour ( M i )  - L-2p’” ,  which is mandated by the finite-size-limited 
behaviour of the two-point correlation function. The form assigned to the scale factor 
a ( L )  ensures that the right-hand side of ( 2 . 1 0 ~ )  depends upon the bulk system 
correlation length 6 - IK - K,I-” through the appropriate scaling combination L/6 .  
Finally, the factor e( L )  incorporates the effects of the leading (least-irrelevant) correc- 
tion-to-scaling field. 

To the extent that L is large enough on microscopic scales (and that e ( L )  is thus 
‘small’) and 5 is large compared to L (so that a ( L )  ( K  - K , )  is ‘small’), we may expect 
that the right-hand side of (2.10) can be expanded to give 

P ( M L ) =  b ( L ) [ P * ( ~ , ) + a ( L ) ( K - K , ) P T ( ~ L ) + e ( L ) P T ( ~ L ) +  . .  .] (2.12a) 

where we introduce the scaled magnetisation variable 

fi, = b( L ) M L .  (2.1 2 b )  

Given appropriate choices of the parameters a, and bo, the function appearing in 
equation (2.10) should have a form unique to a universality class, in the large-L limit, 
where the correction-to-scaling field e(  L )  is negligible. In particular the functions P* 
and PT appearing in ( 2 . 1 2 ~ )  should also have universal forms. A stronger claim may 
sometimes be warranted: to the extent that the members of a universality class are 
characterised by a unique correction-to-scaling index w (and thus, implicitly, a unique 
leading correction-to-scaling field), the function PT in (2.12a) should also be unique 
to a universality class. 

3. Monte Carlo studies 

3.1. Computational details 

The Monte Carlo studies reported here were performed using a Metropolis algorithm 
implemented in parallel on an ICL distributed array processor. General features of 
parallel coding strategy are discussed by Bowler and Pawley (1984). The systems 
studied were of linear dimensions ranging from L = 8 to L = 64, with periodic boundary 
conditions. The basic observables selected were the probability distribution P(  M L )  
(which determines the Helmholtz function F (  M L ) :  equation (2.66)) and the energy 
function E(  M L )  (which determines the coupling derivative, P I (  M L ) ,  of the distribution 
P(M, ) :  equation ( 2 . 9 ~ ) ) .  The distribution P ( M , )  was determined (initially as a 
histogram) directly in accordance with its definition (2.4). The energy function E ( M , )  
was determined as an average, for each M L  value explored in the course of the 
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simulation, of the associated values of the interaction energy (2.1 6 ) .  The two functions 
were measured for each model type, system size and coupling of interest. The spin-f 
and spin-1 model studies which constitute the bulk of the new work reported here 
consisted of 2 x lo5 lattice passes for equilibrium, followed by a sequence of 2 x lo5 
observations with between 2( L = 8) and 80( L = 64) lattice passes between each observa- 
tion. In each instance the whole procedure was repeated a number (up to 16) of times, 
the statistical independence of the data sets thus generated was tested and statistical 
error limits assigned on the basis of the appropriate variance. The studies of the 44 
model presented here represent extensions of work reported in I. The form of 
Metropolis algorithm deployed in dealing with continuously distributed variables is 
discussed in that paper. The results presented here were accumulated over some 2 x lo4 
observations separated by lo2 lattice passes, after in excess of lo6 passes for equilibrium 
in the case of the largest ( L  = 64) lattice. 

3.2. The moments of the distribution 

To determine the fixed-point distributions P* and P:, it is clearly essential to be able 
to assign a precise value to the critical coupling. The value of the critical coupling for 
the spin-; Ising model is known from Onsager’s solution: K:”” = 0.4406 , . . . For the 
9“ border model, Bruce (1985) assigned the value KFM = 0.3282(2), while Baker and 
Johnson (1984) found KFM = 0.330. For the spin-1 Ising model the most recent series 
estimates (Adler and Enting 1984) give K;’’  = 0.590 48 (;$). We proceed to describe 
a check on this assignment, based upon an analysis of the moments M:“’ = ( M Z )  of 
the distribution function PL( M ) .  We follow (and thus implicitly check) the strategy 
of I .  Specifically, we focus on the combinations 

GLs [3 (M:Z’ )2 -M:4’ ] /2 (M:Z’ )2  ( 3 . 1 ~ )  

and 

R , =  MY’ /  M Y ’ .  (3.lb) 

Table 1 presents the values of these quantities obtained from the distribution P ( M L )  
(measured as described in the preceding section) for the spin-1 model at a range of 

Table 1. Characteristic parameters (equations (3.1~1, b ) )  of the spin-1 model for a variety 
of system sizes L and couplings strengths K. 

8 
16 
16 
16 
32 
32 
32 
64 
64 
64 

0.590 48 
0.588 5 
0.590 48 
0.592 5 
0.589 5 
0.590 48 
0.591 5 
0.590 0 
0.590 48 
0.591 0 

0.910 54 (19) 
0.899 56 (3 1 ) 
0.913 56 (34) 
0.923 26 ( 3  1 ) 
0.899 31 (64) 
0.916 35 (66) 
0.922 52 ( 5 5 )  
0.909 27 (180) 
0.916 74 (146) 
0.923 44 (135) 

~~~ ~ 

0.648 14 (47) 
0.51902 (51) 
0.535 26 (55 )  
0.546 91 (65) 
0.432 22 (124) 
0.448 14 (122) 
0.455 91 (107) 
0.370 19 (64) 
0.377 22 (12) 
0.384 61 (72) 
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couplings including the series estimate for the critical coupling. These results were 
analysed within the framework of the expansion ( 2 . 1 2 ~ )  which implies the forms 

( 3 . 2 ~ )  

(3.2b) 

given the assignments ( 2 . 1 1 ~ - c )  and (2.12b). 
Implementing these equations directly in the analysis of table 1 we found values 

of the primary critical indices consistent with the expected Ising universality class 
results. The critical coupling was found to be K:” = 0.590 35 (30), consistent with the 
series assignment noted above. The best fit value of the correction-to-scaling index 
was found to be w = 1.4, consistent with the conjecture ( w  =:) of Nienhuis (1982) but 
with a large uncertainty. The value assigned to the fixed-point coupling constant G* 
was found to be strongly correlated with the value assigned to w .  Fixing w =$ we 
found G* = 0.9149 (44), in accord with the assignment G* = 0.916 ( 1 )  made in an  earlier 
analysis of the spin-; Ising system (Bruce 1985). To tighten these assignments we 
explored one further strategy. We incorporated into the data set for the fitting analysis 
the estimate G* = 0.9154 (10) obtained from further studies of the spin-f Ising system 
for L = 64 (at the exact critical coupling) on the assumption (warranted by our earlier 
studies of smaller-L systems) that corrections to scaling are small and the approach 
to the fixed point is rapid in this instance. With this additional input we found 
KL’) = 0.590 33 (7), G* = 0.9145 (6) and w = 1.33 (+0.55, -0.27), with a x 2  value of 6.4 
for six degrees of freedom. 

In summary, the analysis is fully consistent with the existence of a universal value 
for the fixed-point cumulant ratio, with the conjectured value of the correction-to- 
scaling index w,  and with the series estimate for the critical coupling. 

GL = G*[ 1 + glL’”’( K - K,) + gzL-” + . . .] 
R L =  roL-2P’”[1+r,L’’Y(K -K,)+rzL-”+ . . .] 

3.3. The critical limit: the function P* 

Given the approximation already made in the course of the analysis of the moments, 
the fixed-point distribution PT for the ZD Ising universality class should be well 
approximated by the magnetisation distribution for the L = 64 spin-f model. The form 
of this distribution is shown in figure l ( a ) .  We have chosen the (non-universal) scale 
factor bo (equations ( 2 . 1 1 ~ )  and (2.12b)) so that the distribution has unit variance. 
The figure also shows the result obtained for the L = 64 spin-1 model at the value for 
the critical coupling (KL’ )  = 0.590 48) suggested by series expansions. The agreement 
is strikingly good. Indeed, it is better than one might expect given that we have taken 
account neither of corrections to asymptotic scaling behaviour, nor of the IC;’) 
refinement suggested by our moments analysis. We will consider the corrections 
associated with these effects in due  course. 

In figure l ( b )  we make a similar comparison between the form assigned to P* on 
the basis of the spin-: k ing  calculation and that obtained directly from the form of 
the L = 64 magnetisation distribution of the  border model with the assignment (made 
in I )  K,BM = 0.328 26. The agreement is substantial but not as impressive as that in 
figure l ( a ) .  Given our central thesis that the distribution P” is a signature of a 
universality class, it is clear that, if the claim that the border model does fall into the 
Ising universality class is to be warranted, the discrepancies must be traced either to 
the effects of corrections to scaling or to the need for further refinement of the critical 
coupling. We shall pursue this point in P 3.6. 

We conclude this section with two further observations. 
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1.8, 1.8, 

I In1 

1.5 

0 1 5  O L 5  0 7 5  1 0 5  1 3 5  1 6 5  

l b l  

M; M, 

Figure 1. ( a )  Estimates of the fixed-point order-parameter distribution P* for the 2D k ing  
universality class based on the L = 64 spin-f magnetisation distribution at the exact critical 
point Kkl’z’ (0) and the L = 64 spin-1 magnetisation distribution at the series critical-point 
estimate Ki l l  = 0.590 48 (0). The statistical uncertainties do not exceed the symbol sizes. 
The full curve provides a smooth representation of the spin-: data. ( b )  Estimates of the 
fixed-point distribution P* in the L = 64 b 0 r d e r - 6 ~  magnetisation distribution at K f M  = 

0.328 26 (*)  together with the spin-: estimate (-). These results make no allowance for 
corrections to scaling. 

Firstly, we note the existence of an exact result for the large-M, limit of the 
probability distribution function P(M, )  for the spin-i Ising model at its bulk critical 
point (McCoy and  Wu 1973) from which one may infer that, for large GL, 

p*(GL) - exp(-p,GijbL-’) (3.3) 

where 6 = 15 is the index characterising the variation of the magnetisation with a 
magnetic field along the critical isotherm. Our results are consistent with this form: 
fitting the observed P* with the function (3.3) in the range fi> 1.18 gives 6 = 15.22 
(18) with a x 2  of 0.74 for three degrees of freedom. 

Secondly, we note that the key result of this section, the structure of the fixed-point 
distribution P*, may be usefully recast as a statement of the form of the Helmholtz 
free-energy function F(M,)  at criticality. The result for A F ( M , )  = F(M,)  - F ( 0 )  
(implied directly by equations (2.6b) and ( 2 . 1 2 ~ )  and figure l ( a ) )  is shown in figure 
2(a ) .  

3.4. Deviations from criticality: the function PT 

The function P: controls the effects of deviation from criticality upon the magnetisation 
probability distribution. As such it may be computed from the results of simulations 
at small but finite K - K,. Alternatively it may be computed from simulations at 
criticality by appeal to the relation (2.9a).  We have implemented both approaches. 
The results are fully consistent with one another, thereby vindicating the analyticity 
assumption made in inferring ( 2 . 1 2 ~ )  from (2.10). We present only the results derived 
from the latter strategy, which is statistically superior. 
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Figure 2. ( a )  The critical-point free-energy function difference defined by equation (2 .6b)  
for spin-4 (-) and spin-1 (0) systems, computed from the results shown in figure l ( a ) .  
( b )  The critical-point scaled-energy function difference defined by equation (3.4) for spin-f 
(-) and spin-1 (0) systems. 

The results may, in the first instance, be expressed in terms of the scaled energy 
function, 

AE(G,) = u - ' ( L ) ( E ( M , ) -  E ) ~ = ~ ,  (3.4) 

where E ( M J  (the mean energy of configurations with a given M L )  and E (the mean 
energy over all configurations) are defined in (2.8) and (2.96). The amplitude factor 
a ( L ) ,  inserted for convenience in (3.4), is that introduced in (2.10). Inspection of 
equations (2.7), ( 2 . 9 ~ )  and ( 2 . 1 2 ~ )  shows that this scaled energy function should be 
universal modulo the convention used to prescribe the system-specific amplitude a, 
(equation (2.1 1 b ) ) ,  given the continued operation of the 'unit variance' convention 
prescribing 60. 

Figure 2(6) shows the form of the energy function (3.4) computed for studies of 
the spin-; model at criticality (full curve). The amplitude a, has been chosen so that 
a ( L )  = 1 for the L = 64 lattice. The figure also shows (data points) the corresponding 
results for the spin-1 model. The two sets of results have been brought into coincidence 
by a single scaling (assignment of ao) confirming the anticipated universality. 

The form of the function PT follows immediately from (2.12a), (2.7), ( 2 . 9 ~ )  and 
(3.4). Figure 3(a)  shows the results obtained for the spin-f and spin-1 models. Note 
that, given the convention we have chosen to prescribe the parameter ao, the function 
shown gives an unscaled representation of the coupling derivative PI (equation (2.7)) 
for the L = 64 spin-; model. Figure 3( b )  makes a similar comparison between the 
results obtained from spin-f and b0rder -4~ models. The level of agreement is very 
similar to that apparent in figure l ( b ) ,  although the statistical quality of the P: data 
is considerably poorer. 

3.5. Corrections to scaling: the function PT 

The function P$ controls the rate at which the scale-invariant fixed-point distribution 
of the magnetisation is approached with increasing system size, at criticality. Although 
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Figure 3. The coupling derivative function PT (equation ( 2 . 1 2 ~ ) )  obtained by computation 
of the energy operator E ( M )  (equation ( 2 . 9 ~ ) )  for spin-f (0) and spin-1 (U) systems. 
Representative (one standard deviation) statistical uncertainties are indicated. The full 
curve provides a smooth representation of the spin-f data. The units are such that the 
spin-f data give an unsealed representation of the coupling derivative P, (equation (2 .7))  
for the L=64 spin-f system. ( 6 )  The coupling derivative function P? for the b 0 r d e r - 6 ~  
model (*), compared with the spin-f estimate (-). 

it is possible to conceive of more sophisticated ways of determining this function 
(analogous to that by which we determined the function PT) we report here the results 
obtained by the direct expedient of comparing the forms of distributions for different 
system sizes. We have focused on the spin-I and b0rder -4~ models: the corrections 
to scaling in the spin-; model are 'small' (the approach to the asymptotic limit fast) 
and, indeed, may not be prototypical of the class of scalar models (Barma and Fisher 
1984). To eliminate the uncertainties associated with the two models we have (in each 
case) determined the corrections-to-scaling function by combining the results for the 
distributions on three system sizes, at the same near-critical coupling, in such a way 
as to eliminate the first two terms appearing in the expansion ( 2 . 1 2 a )  (given the 
assumption v = 1 in ( 2 . 1 1 b ) ) .  The results (given the assumption w =$  in ( 2 . 1 1 ~ ) )  are 
shown in figure 4. The units have been chosen so that the data shown give the 
contributions made by corrections to scaling to the respective L = 64 magnetisation 
distributions. 

As is apparent from the representative error bars, the quality of the data is poor, 
reflecting the relative enhancement of uncertainties arising from the differencing pro- 
cedure. Nevertheless, the broad agreement between the two data sets is apparent. 
Inspection of the figure also reveals the particular importance of corrections to scaling 
in the border model: the corrections are some 2.5 times larger for the border model 
than they are for the spin-1 model. 

3.6. The critical limit revisited 

We now return to consider the structure of the fixed-point magnetisation distribution. 
As noted in 93.3, the data presented in figures 1 ( a )  and 1 (  6) represent only approxima- 
tions to the fixed-point distribution, deviating from it by virtue of corrections to scaling 
and (possibly) corrections due to residual error in the assignment of the critical coupling. 
Utilising our results for the coupling derivatives of the distributions ( 9  3.4)  and the 
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0 . 0 2 4  1 2 

L 
I 
L 0 06 

f -0 ,012 - -0 03 
Figure 4. Estimates of the corrections-to-scaling function P t  (equation (2.120)) obtained 
by comparison of distributions computed on different system sizes for the spin-1 model 
(U; left-hand scale) and the border model (*; right-hand scale). The units are such that 
the functions shown give estimates of the contribution which corrections-to-scaling make 
to the respective L = 64 magnetisation distributions. 

corrections to scaling (9  3.5) we can now refine our results somewhat, for both b0 rde r -6~  
and spin-1 systems. The results of this refinement are shown in figure 5 .  In each case 
we have refined the data of figure 1 in two respects. Firstly, we have eliminated the 
correction-to-scaling contributions, previously identified. Secondly, we have allowed 
ourselves the license of adjusting our estimates of the critical couplings within the 
limits prescribed by the results of our moments analysis ( 5  3.2 and I). The results 

1.5 

1 
0 3 4  b 

c 

0 I - - - - " " , , , " , , ,  
015 0 4 5  075 105 1 3 5  1 6 5  

Figure5. Estimates of the fixed-point distribution P" for spin-1 (D) and border-b4 model 
(*) with allowance made for corrections to scaling, and with the choices KL') = 0.590 43 
and KE" = 0.328 36. The full curve represents the spin-4 estimate (figure l ( a ) )  with no 
allowance made for corrections to scaling. 
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shown in figure 5 corresponding to critical coupling values K;'' = 0.590 43 and KEM = 
0.328 36. Neither coupling-constant refinement is statistically significant, resulting in 
changes in our estimates of the limiting distributions that are smaller than the statistical 
uncertainties associated with the basic distributions. Nevertheless, one observes that 
(this is of course the motivation), with these choices, our estimates of the fixed-point 
distribution based on spin-1 and border-model data are brought into close coincidence 
with one another, and with the estimate obtained from the spin-i model. 

4. Summary 

The results presented in this paper provide clear evidence in support of the general 
contention that the order-parameter distribution in a finite near-critical system offers 
a useful hallmark of a universality class. We have seen explicitly that this contention 
is valid both at the critical point (the universality of the function P*) and near the 
critical point (the universality of the coupling derivative function PT). There is little 
doubt that it will hold more generally provided only that L and 6 are both large 
compared to all other lengths. 

Our results also lend support to the view (Barma and Fisher 1984, 1985) that the 
b 0 r d e r - 9 ~  model belongs to the Ising universality class, and that indications to the 
contrary (Baker and Johnson 1984) are to be attributed to substantial corrections to 
scaling. The analysis of our spin-1 data provides some evidence of a correction-to- 
scaling index w consistent with the conjecture of Nienhuis (1982). It may prove 
possible to test this claim more definitely if one can determine the scaling (L depen- 
dence) of the irrelevant scaling field by direct simulation measurement of an appropriate 
operator, instead of appealing, as we have done here, to the intrinsically noisy difference 
between simulations on different system sizes. 
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Note added in prooj In a recent paper, Adler (1987 J.  Phys. A: Math. Gen. 20 3419) has presented the results 
of further series expansion studies of the border model, suggesting, in accord with the conclusions reached 
here, a critical coupling significantly lower than the earlier series estimate. 
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